Δx x - x₀
vmitj = ―― = ――
Δt t - t₀
On "t" és temps final, t₀ és temps inicial, "x₀" és posició inicial, "x" és posició final, "Δt " és increment de temps i "Δx" és desplaçament.
Blog on apareixen algunes de les fórmules màtemàtiques més utilitzades. Per resoldre qualsevol operació/problema matemàtic: http://www.mathway.com/
Com verificar que també és certa la fórmula següent, en un mua?
ResponEliminavmitj = (vo + vf)/2
Vaja, o que no és certa.
Ara t'explico les deduccions.
EliminaEn MRU, la fórmula és correcte ja que:
Vo=Vf;
Vmitj= 2Vo/2; (s'eliminen els 2 i queda) Vmitj=Vo
En MRUA és més llarg, però hem de partir que la velocitat mitjana és el quocient del desplaçament entre el temps transcorregut per fer el desplaçament.
1er: Substituim Vf per (Vo +at)
2on: Agrupem Vo i en queda (2Vo + at)/2
3er: Eliminem els dosos, de manera que tenim: Vo +0.5at.
4rt: Multipliquem tot per temps: (Vo * t + 0.5at^2)/t
5è; inserim dins el parentesis posició inicial (per així tenir la fórmula de posició en un MRUA) i a fora d'aquest hi restem posició inicial: [( Xo + Vo * t + 0.5at^2) - Xo]/t
6è: Substituim la fórmula de la posició per posició final i ens queda la definició de velocitat mitjana:
Xf - Xo
Vmitj= ----------
t
Si vols, en aquest link hi ha una foto de la deducció
http://forum.lawebdefisica.com/vlatex/pics/261_118374fcdc51e9bb5551acaa8a748a60.png
Sí que és certa,. Encara que s'acostuma a escriure al revés
ResponEliminaVmitj = (Vf+ Vo) /2